
Real-time Acquisition of Buyer
Behaviour Data —

The Smart Shop Floor Scenario

Bo Yuan, Maria E Orlowska, Shazia Sadiq

School of Information Technology and Electrical Engineering
The University of Queensland, St Lucia QLD 4072

Brisbane, Australia

Infrastructure

We are interested in characterizing the behaviour of buyers in terms of
their navigation paths defined by shelf sectors passed by.

n Smart Trolley
• Capture buyer profile.
• Read product item tags.
• Receive location data from sector indicators.

n Sector Indicators
• Sense the existence of a trolley and send it the unique sector

identification.

n Secure Wireless Network
• Provide the communication between smart trolleys, sector indicators

and back-end servers to collect real-time path and shopping data

High-Level Representation

a b

c d e

f g

a b

c

f g

ed

Example Paths

a›b›e›g›d

f›g›d›f›c

b›d›g›f›d›b

Queries

Given the path records and shopping records, we can

conduct the following queries:

n Query 1. To discover the most frequent path with a given length.

n Query 2. To find out the longest path with a minimum support.

n Query 3. To find out sectors where buyers visit frequently but

seldom purchase any products.

Query 1: Finding the most popular path

n The length of the path is defined as the number of sectors involved.

n This is different from traditional sequence mining problems.
• No support threshold given.
• Sectors must be directly connected to each other.

n The number of all possible paths could be huge given a shop floor.
• Cannot afford enumerating all candidates in advance.

n However, a path record with M sectors supports at most M-N+1 unique
candidate paths of length N.

{a b c d e f g h} › {a b c d e}, {b c d e f}, {c d e f g}, {d e f g h}

n A dataset with K records supports at most (M-N+1)·K unique paths.

n A single scan of the dataset is sufficient for solving this query.

Query 1: Algorithm Details

n Step 1: Select a new path record from the dataset. If all records have been

processed, go to Step 5.

n Step 2: Find out all N-sector candidate paths supported by it.

n Step 3: Assign a new id to each candidate path generated in Step 2 that has

never been met before.

n Step 4: Increase the counter of each unique candidate path. Go to Step 1.

n Step 5: Return the id of the counter with the maximum value.

Query 1: Data Structure

n A data structure for the candidate-id mapping.
• ids are integers sequentially starting from 1.
• Assign a new id to each new candidate path.
• Return the id of an existing candidate path.
• Each operation needs N steps.

n An array of counters
• Store the frequency of each candidate path.
• Updated for candidate paths found for the first time in a record.
• Do not count multiple occurrences in the same record.

Head

a

b

c

d (8)

Query 1: Examples

n Suppose the first record is {a b c d e b c d}, N=3

[1, 1, 1, 1, 1]2{b c d}6

[1, 1, 1, 1, 1]5{e b c}5

[1, 1, 1, 1]4{d e b}4

[1, 1, 1]3{c d e}3

[1, 1]2{b c d}2

[1]1{a b c}1

Array of CountersIDCandidateNo.

Duplicates

No new id given No new counter created

Query 1: Time Complexity

n There are totally (M-N+1)·K candidate paths to be processed.

n For each candidate path, we need to find out its id or create one, which
requires N steps.

n The time complexity is O((M-N+1)·N·K)
 O(M·N·K) for M>>N.

Scalability with the number of records Scalability with the length of candidate paths

Query 2: Finding the longest path

n A minimum support threshold is given.

n Find the path with as many sectors as possible, subject to the threshold.

n The basic procedure is to repeatedly apply Query 1 with N=1,2,... until no
candidate paths are frequent.

n This is similar to the sequence mining problem.

n The key is how to reduce the number of candidate paths.
• Any path containing an infrequent sub-path is deemed to be infrequent.

n Use the information in previous queries to prune the search space.
• Still no need to enumerate candidates in advance.
• Update the dataset instead.

Query 2: Updating the dataset

n For each record with M sectors, maintain an array of M flags.
§ Initially all flags are set to zero.

n Once a candidate path of length N is found to be infrequent, the flag
corresponding to its first sector in the record is set to N.
§ Multiple flag arrays need to be updated if it is contained in multiple records.

n This indicates that all candidate paths containing the sub-path of length N
starting from this sector are deemed to be infrequent.
§ Check this condition before processing each candidate path generated.
§ The actual number of candidate paths that need to be processed may be much

less than (M-N+1)·K.

n There is a need to store the location information of each candidate path.
• Which record does it belong to?
• The offset within the record (i.e., position of its first sector in that record).

x x x a b5

x a b x x x x a b4

x x x x x x x x x x3

x x a b x x x2

a b x x x x x x x 1

A dataset with five records

ab

id 1

counter 4

location

(1,1)
(2,3)
(4,2)

(4,8)
(5,4)

... 11...1...1...1Id Array

... 54...4...2...1

... 48...2...3...1

Record Array

Offset Array

Data structure

Three arrays used to store the location of ‘ab’

00000000

hgfedcbaRecord

Initial Mask

‘d’ is found to be infrequent after the first pass with N=1

00001000

Mask Definition
Value 0: sector S is frequent

Value i (i=1,2,3, ...): all paths of length equal or greater than i starting from
sector S is infrequent.

Since i=x also implies i=x+1, x+2, x+3, ..., the mask of a sector will not be
updated to larger values once it receives a non-zero value.

00001200

00gh

00fg

00ef

Infrequent10de

Infrequent01cd

00bc

00ab

CommentsMask ValuesCandidates

Candidates generated in the second pass with N=2

Sector ‘c’ is given mask 2 because ‘cd’ is infrequent.

The mask value of sector ‘d’ is unchanged because it is already non-zero.

Infrequent200fgh

Infrequent020efg

Infrequent102def

Infrequent210cde

Infrequent021bcd

002abc

CommentsMask ValuesCandidates

Candidates generated in the third pass with N=3

Suppose ‘fg’ is found to be infrequent at the end of the second pass with N=2

Elimination rule: the jth (jє [1,N]) mask value i belongs to interval 0
 i
 N-j+1.
This means that there is one infrequent sub-path fully contained in the candidate.

00201200

hgfedcba

Query 3: Finding sectors below a given
purchase level
n The purchase level of a sector is defined as the ratio between

• The number of records in which at least a product in this sector is purchased.
• The number of records in which this sector is visited.

n Some sectors may be visited frequently but produce little profit.

n Assume that any product is only available from a certain sector.

n Transform the shopping/transaction records into sector records.

n Apply Query 1 with N=1 on the sector records
• Frequency of each sector with purchasing activity.

n Apply Query 1 with N=1 on the path records
• Frequency of each sector being visited

n Calculate the ratios.

More Queries …
n Classical data mining problems

• Which sectors are likely to be visited during the same shopping trip?
• The popular sequences of sectors

n Real-time path planning
• The trolley knows your shopping list
• Minimize the shopping time

n Time stamp information
• How long did a customer spend on each sector?
• When did a customer purchase a certain product?

n Queries can be conducted only on sectors with purchasing activities.
• Understand the purchasing behaviour instead of the navigation behaviour.

Conclusions

n Presented data acquisition method may generate source material for
marketing studies,

n The general solution is applicable to different domains,

n More interesting mining exercises can be design when combining
generated data with other data sources.

	Slide2
	Infrastructure
	High-Level Representation
	Queries
	Query 1: Finding the most popular path
	Query 1: Algorithm Details
	Query 1: Data Structure
	Query 1: Examples
	Query 1: Time Complexity
	Query 2: Finding the longest path
	Query 2: Updating the dataset
	Slide24
	Slide17
	Slide18
	Slide19
	Query 3: Finding sectors below a given purchase level
	More Queries …
	Conclusions

